Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122138, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36442343

RESUMO

Sulfonamides (SAs) are widely used in many fields because of their advantages, including low price, wide antibacterial spectrum, and high stability. However, their accumulation in the human body leads to a variety of serious diseases. Therefore, it is necessary to design a convenient, effective, and sensitive method to detect SAs. Moreover, the fluorescence excitation spectrum has rich information characteristics, especially for the interaction between fluorophore and quencher via various mechanisms. However, the excitation wavelength-guided sensor array construction does not draw proper attention. To address these issues, we used BSA-AuNCs as a single probe to construct a sensor array for the detection of five SAs. The selected SAs showed different quenching effects on the fluorescence intensities of BSA-AuNCs. The changes in the fluorescence intensity at different excitation wavelengths (λ = 230, 250, and 280 nm) have been applied to construct our sensor array and address the distinguishability between the selected SAs. With helping of pattern recognition methods, five different SAs have been identified at three different concentrations. Additionally, qualitative analysis at different moral ratios and quantitative analysis at nanogram concentrations have been considered. Moreover, the proposed sensor array was successfully used to distinguish between different SAs in commercial milk with an accuracy of 100 %. This study provides a simple and powerful approach to SAs detection. Also, it shows a broad application prospect in the field of food and drug monitoring.


Assuntos
Nanopartículas Metálicas , Humanos , Espectrometria de Fluorescência , Ouro , Fluorescência , Sulfonamidas , Corantes Fluorescentes , Sulfanilamida
2.
Anal Chem ; 94(50): 17533-17540, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473730

RESUMO

Rapid and on-site qualitative and quantitative analysis of small molecules (including bioflavonoids) in biofluids are of great importance in biomedical applications. Herein, we have developed two deep learning models based on the 3D fluorescence spectra of gold nanoclusters as a single probe for rapid qualitative and quantitative analysis of eight bioflavonoids in serum. The results proved the efficiency and stability of the random forest-bidirectional long short-term memory (RF-BLSTM) model, which was used only with the most important features after deleting the unimportant features that might hinder the performance of the model in identifying the selected bioflavonoids in serum at very low concentrations. The optimized model achieves excellent overall accuracy (98-100%) in the qualitative analysis of the selected bioflavonoids. Next, the optimized model was transferred to quantify the selected bioflavonoids in serum at nanoscale concentrations. The transferred model achieved excellent accuracy, and the overall determination coefficient (R2) value range was 99-100%. Furthermore, the optimized model achieved excellent accuracies in other applications, including multiplex detection in serum and model applicability in urine. Also, LOD in serum at nanoscale concentration was considered. Therefore, this approach opens the window for qualitative and quantitative analysis of small molecules in biofluids at nanoscale concentrations, which may help in the rapid inclusion of sensor arrays in biomedical and other applications.


Assuntos
Líquidos Corporais , Nanopartículas Metálicas , Ouro , Flavonoides , Espectrometria de Fluorescência/métodos
3.
Carbohydr Polym ; 298: 120120, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241292

RESUMO

Chitosan modification has attracted considerable interest in the nanozyme field last decade. As a chitosan derivative, carboxylated chitosan (CC) has been less explored. Herein, PtNPs with an average size of approximately 3.3 nm and zeta potential of -44.8 ± 0.3 mV (n = 3) have been prepared by using CC as the surface modification (CC-PtNPs). We have carried out an in-depth investigation of CC-PtNPs, including the characterization, colloidal stability, and ascorbate oxidase-like activity. Due to the contribution of carboxylated chitosan, CC-PtNPs present improved colloidal stability and ascorbate oxidase-like activity compared to chitosan-modified Pt nanozyme. Inspired by these results, a fluorometric acid phosphatase sensor was proposed based on the improved performance of CC-PtNPs. This sensor exhibits excellent sensitivity and selectivity towards acid phosphatase in the linear range of 0.25-18 U/L with a low limit of detection (1.31 × 10-3 U/L). The concentration of acid phosphatase in human semen samples has been successfully measured.


Assuntos
Quitosana , Nanopartículas Metálicas , Fosfatase Ácida , Ascorbato Oxidase , Ácidos Carboxílicos , Humanos , Platina
4.
Anal Chem ; 94(26): 9287-9296, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35723526

RESUMO

Vitamin B6 derivatives (VB6Ds) are of great importance for all living organisms to complete their physiological processes. However, their excess in the body can cause serious problems. What is more, the qualitative and quantitative analysis of different VB6Ds may present significant challenges due to the high similarity of their chemical structures. Also, the transfer of deep learning model from one task to a similar task needs to be present more in the fluorescence-based biosensor. Therefore, to address these problems, two deep learning models based on the intrinsic fingerprint of 3D fluorescence spectra have been developed to identify five VB6Ds. The accuracy ranges of a deep neural network (DNN) and a convolutional neural network (CNN) were 94.44-97.77% and 97.77-100%, respectively. After that, the developed models were transferred for quantitative analysis of the selected VB6Ds at a broad concentration range (1-100 µM). The determination coefficient (R2) values of the test set for DNN and CNN were 93.28 and 97.01%, respectively, which also represents the outperformance of CNN over DNN. Therefore, our approach opens new avenues for qualitative and quantitative sensing of small molecules, which will enrich fields related to deep learning, analytical chemistry, and especially sensor array chemistry.


Assuntos
Aprendizado Profundo , Fluorescência , Ouro , Vitamina B 6 , Vitaminas
5.
Mikrochim Acta ; 186(12): 778, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31728642

RESUMO

Platinum nanoparticles (Pt NPs) covered with a bovine serum albumin scaffold and a particle size of 1.5 nm (BSA-PtS NPs) are shown to display enhanced multiple enzyme-mimicking activities including peroxidase, oxidase, and catalase-like activities. The peroxidase-like activity is characterized by robustness and low signal background. BSA-PtS NPs were used to design colorimetric assays for H2O2 and glucose. H2O2 latter reacts with 3,3',5,5'-tetramethylbenzidine in the presence of BSA-PtS NPs to form a blue product with an absorption maximum at 652 nm. The assay works in the 5-250 µM H2O2 concentration range. The glucose assay is based on its glucose oxidase-catalyzed oxidation to produce gluconic acid and H2O2 which then is colorimetrically quantified. Response is linear in the 10-120 µM glucose concentration range, and the detection limit is 2 µM (at S/N = 3). The method correlates well with the glucose standard method (R2 = 0.997 in the 95% confidence interval) which confirms that glucose in human serum has been successfully detected. Graphical abstractImproved enzymatic assay for hydrogen peroxide and glucose by exploiting the enzyme-mimicking properties of BSA-coated platinum nanoparticles.


Assuntos
Glicemia/análise , Colorimetria/métodos , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Animais , Benzidinas/química , Catálise , Bovinos , Corantes/química , Glucose Oxidase/química , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Oxirredução , Oxirredutases/química , Tamanho da Partícula , Platina/química , Soroalbumina Bovina/química
6.
Mikrochim Acta ; 186(5): 301, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31028498

RESUMO

It is found that catechol inhibits the oxidase-mimicking activity of chitosan-protected platinum nanoparticles (Chit-PtNPs) by competing with the substrate for the active site of the Ch-PtNPs. The inhibition mechanism of catechol is different from that of ascorbic acid in that it neither reacts with O2•- nor reduces the oxidized 3,3',5,5'-tetramethylbenzidine (TMB). Tyrosinase (TYRase) catalyzes the oxidation of catechol, thus restoring the activity of oxidase-mimicking Chit-PtNPs. By combining the Chit-PtNP, catechol, and TYRase interactions with the oxidation of TMB to form a yellow diamine (maximal absorbance at 450 nm), a colorimetric analytical method was developed for TYRase determination and inhibitor screening. The assay works in the 0.5 to 2.5 U·mL-1 TYRase activity range, and the limit of detection is 0.5 U·mL-1. In our perception, this new assay represents a powerful approach for determination of TYRase activity in biological samples. Graphical abstract Schematic representation of a colorimetric method for tyrosinase (TYRase) detection and inhibitor screening. It is based on the fact that catechol can inhibit the oxidase-like activity of chitosan-stabilized platinum nanoparticles (Ch-PtNPs) by competing with the substrate for the active sites and TYRase can catalyze the oxidation of catechol.


Assuntos
Materiais Biomiméticos/química , Catecóis/farmacologia , Quitosana/química , Colorimetria/métodos , Nanopartículas Metálicas/química , Monofenol Mono-Oxigenase/metabolismo , Platina/química , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Oxirredutases/metabolismo
7.
Anal Chim Acta ; 971: 88-96, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28456287

RESUMO

In this work, bimetallic Bi/Pt nanoparticles in bovine serum albumin biomolecular scaffold (BSA-Bi/PtNPs) were synthesized through a facile and green method. As compared with BSA-PtNPs, the BSA-Bi/PtNPs possess enhanced peroxidase-like catalytic activity. Moreover, the BSA-Bi/PtNPs are stable in harsh conditions such as high temperature, extreme pH environments, and high ionic strength, as well as in common biological matrixes. These prominent advantages enable the BSA-Bi/PtNPs to be applied to a wide range of fields. Bioassays, such as serum glucose detection, extracellular hydrogen peroxide (H2O2) monitor, and cancer cells labeling, have been realized with satisfying results. The linear range of glucose determination was from 1 to 100 µM and the limit of detection (LOD) was 0.2 µM. The H2O2 released from each MCF-7 cell after stimulation was calculated to be 2.66 × 10-16 mol/s. By utilizing folic acid as a recognition element, tumor cell could be readily distinguished by BSA-Bi/PtNPs and the LOD for MCF-7 cell detection was 90 cells.


Assuntos
Bismuto , Nanopartículas Metálicas , Peroxidase/química , Platina , Técnicas Biossensoriais , Humanos , Peróxido de Hidrogênio , Limite de Detecção , Células MCF-7 , Soroalbumina Bovina
8.
Int J Oncol ; 49(4): 1589-99, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27499479

RESUMO

Growing evidence suggests that microRNA plays an essential role in the development and metastasis of many tumors, including gastric cancer. Aberrant miR­370 expression has been indicated in tumor growth, but the mechanism of miR­370 inhibits both the proliferation and metastatic ability for gastric cancer remains unclear. Accumulating evidence reported that PTEN signaling pathway plays an important role in the cellular processes, such as apoptosis, cell growth and proliferation. The goal of this study was to identify whether miR­370 could inhibit the growth, migration, invasion, proliferation and metastasis of gastric cancer through targeting PTEN. Real-time PCR (RT-PCR) was used to quantify miR-370 expression in vitro experiments. The biological functions of miR­370 were determined via cell proliferation. Our study indicated that miR­370 targeted PTEN leading to activation of apoptosis signaling and the cell proliferation of cervical cancer cells, ameliorating gastric cancer growth and progression. In addition, the combination of miR­370 and PTEN inactivated AKT, MDM2 and mTOR while stimulated caspase-3, p53 and GSK3ß expression, promoting apoptosis and suppressing proliferation of gastric cancer cells. Therefore, our study revealed the mechanistic links between miR­370 and PTEN in the pathogenesis of gastric cancer through modulation of cell apoptosis and proliferation. Additionally, targeting miR­370 could serve as a novel strategy for future gastric cancer therapy clinically.


Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/genética , Western Blotting , Citometria de Fluxo , Técnica Direta de Fluorescência para Anticorpo , Humanos , Técnicas Imunoenzimáticas , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas , Regulação para Cima
9.
Analyst ; 140(22): 7650-6, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26436146

RESUMO

Given the importance of hydrogen peroxide (H2O2) in many biological processes and its wide application in various industries, the demand for sensitive, accurate, and economical H2O2 sensors is high. In this study, we used Fenton reaction-stimulated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters (NAC-AuNCs) as a reporter system for the determination of H2O2. After the experimental conditions were optimized, the sensing platform enabled the analysis of H2O2 with a limit of detection (LOD) as low as 0.027 µM. As the glucose oxidase cascade leads to the generation of H2O2 and catalase catalyzes the decomposition of H2O2, these two biocatalytic procedures can be probed by the Fenton reaction-mediated quenching of NAC-AuNCs. The LOD for glucose was found to be 0.18 µM, and the linear range was 0.39-27.22 µM. The LOD for catalase was 0.002 U mL(-1), and the linear range was 0.01-0.3 U mL(-1). Moreover, the proposed sensing methods were successfully applied for human serum glucose detection and the non-invasive determination of catalase activity in human saliva, demonstrating their great potential for practical applications.


Assuntos
Acetilcisteína/química , Técnicas Biossensoriais/métodos , Glicemia/análise , Catalase/análise , Peróxido de Hidrogênio/análise , Ferro/química , Nanopartículas Metálicas/química , Glucose/análise , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Modelos Moleculares , Saliva/química , Saliva/enzimologia
10.
Analyst ; 140(15): 5251-6, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26075633

RESUMO

A facile approach is proposed for the growth of platinum nanoparticles on graphene oxide (PtNPs/GO). The resulting PtNPs/GO hybrid has been proved to function as peroxidase mimics that can catalyze the oxidation of peroxidase substrates in the presence of hydrogen peroxide (H2O2). Kinetic studies indicate that the PtNPs/GO nanocomposite has a considerably higher affinity for both 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 than those of other platinum-based peroxidase mimics. Furthermore, colorimetric recognition and sensing of L-cysteine with high sensitivity and selectivity is presented based on target-induced shielding against the peroxidase-like activity of PtNPs/GO. We envision that this material will be an ideal candidate for a wide range of potential applications in the fields of biomedicine and environmental chemistry.


Assuntos
Cisteína/análise , Grafite/química , Nanopartículas Metálicas/química , Óxidos/química , Peroxidase/química , Benzidinas/química , Catálise , Colorimetria/métodos , Peróxido de Hidrogênio/química , Cinética , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Modelos Moleculares , Oxirredução
11.
Chem Commun (Camb) ; 51(37): 7847-50, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854314

RESUMO

Herein, we reported for the first time a facile synthetic process of gold nanoclusters (AuNCs) by using N-acetyl-L-cysteine both as a reducing agent and as a protection ligand. Based on the pH stimuli-responsive properties of the as-prepared AuNCs, we constructed a pH-sensing platform for the detection of urea, urease, and urease inhibitors.


Assuntos
Inibidores Enzimáticos/análise , Ouro/química , Nanopartículas Metálicas/química , Ureia/análise , Urease/análise , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Helicobacter pylori/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Relação Estrutura-Atividade , Urease/antagonistas & inibidores , Urease/metabolismo
12.
Anal Chem ; 86(21): 10955-60, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25312579

RESUMO

An easily prepared platinum nanoparticle (PtNP) probe for the sensitive and selective detection of Hg(2+) ions is developed here. The PtNPs with an average size of approximately 2.5 nm were prepared by a reduction method with sodium borohydride and trisodium citrate serving as reductant and stabilizer, respectively. The resulting PtNPs could catalyze the reduction of Hg(2+) by surface-capping citrate. The effect of Hg(2+) uptake implies amalgam formation, which leads to remarkable inhibition of the peroxidase-like activity of citrate-capped PtNPs. On the basis of this effect, a colorimetric mercury sensor was established through the use of citrate-capped PtNPs to catalyze the colorimetric system of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. The high specificity of the Hg-Pt interaction provides the excellent selectivity for Hg(2+) over interfering metal ions. The sensitivity of this smart probe to Hg(2+) is extremely excellent with a limit of detection (LOD) as low as 8.5 pM. In view of these advantages, as well as the cost-effectiveness, minimized working steps, and naked-eye observation, we expect that this colorimetric sensor will be a promising candidate for the field detection of toxic Hg(2+) ions in environmental, biological, and food samples.


Assuntos
Citratos/química , Mercúrio/análise , Nanopartículas Metálicas/química , Platina/química , Limite de Detecção , Microscopia Eletrônica de Transmissão
13.
Biosens Bioelectron ; 62: 331-6, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038538

RESUMO

Platinum nanoparticles (PtNPs) in the scaffold of bovine serum albumin (BSA) through biomineralization are found to possess excellent peroxidase-like activity that can catalyze N-ethyl-N-(3-sulfopropyl)-3-methylaniline sodium salt (TOPS) coupled with 4-amino-antipyrine (4-AAP) by the action of hydrogen peroxide to give an obvious purple product. Based on this phenomenon, acetylcholinesterase (AChE) and choline oxidase (ChOx) are used to catalyze ACh and choline to form the active product H2O2 and the as-produced H2O2 is detected optically. Owning to the protection effect of the protein shell, BSA-PtNPs turn out to be very stable and preserve the catalytic activity in the presence of protein and even in the real plasma samples. This protein antifouling property makes the BSA-PtNPs suitable for a wide range of applications in sensors for biological samples. Choline in infant formula and ACh in plasma have been successfully detected.


Assuntos
Acetilcolina/análise , Técnicas Biossensoriais/métodos , Colina/análise , Acetilcolina/sangue , Acetilcolinesterase , Oxirredutases do Álcool , Ampirona , Compostos de Anilina , Animais , Bovinos , Enzimas Imobilizadas , Humanos , Peróxido de Hidrogênio , Lactente , Fórmulas Infantis/química , Nanopartículas Metálicas , Oxirredução , Peroxidase , Platina , Soroalbumina Bovina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...